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Abstract: Despite the increasing popularity of shared-memory systems, there is a lack
of tools for providing fault tolerance support to shared-memory applications. CPPC
(ComPiler for Portable Checkpointing) is an application-level checkpointing tool fo-
cused on the insertion of fault tolerance into long-running MPI applications. This
paper presents an extension to CPPC to allow the checkpointing of OpenMP applica-
tions. The proposed solution maintains the main characteristics of CPPC: portability
and reduced checkpoint file size. The performance of the proposal is evaluated using
the OpenMP NAS Parallel Benchmarks showing that most of the applications present
small checkpoint overheads.
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1 Introduction

As parallel machines increase their number of processors, so does the failure rate

of the global system. This is not a problem while the mean time to complete the

execution of an application remains well under the mean time to failure of the

underlying hardware. However that is not always possible on applications with

long runs, where users and programmers need to make use of fault tolerance

techniques to ensure that not all computation done is lost on machine failures.

In the early 2000s computer architecture trends switched to multicore scal-

ing as a response to various architectural challenges that severely diminished

the gains of further frequency scaling. This approach has enabled processors to

take advantage of increasing transistor counts, according to Moore’s Law, for

the last decade. As a result, shared memory can be found in most current com-

putational systems, ranging from desktops to large supercomputers. [OpenMP]

is the de-facto standard for parallel programming on shared-memory systems.

There exist many applications written in either pure OpenMP or a combination

of MPI and OpenMP. However, most of the research on fault tolerance for par-

allel applications has focused on the message-passing model and the distributed

memory systems [Beguelin et al. 1994, Bouteiller et al. 2003, Chen et al. 1997,

Stellner 1996, Sunil et al. 2003, Woo et al. 2004], and there is a lack of tools for

shared-memory applications.

Checkpointing is a widely used fault tolerance technique, in which the com-

putation state is saved periodically to disk, allowing the recovery of the ap-
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plication when a failure occurs. CPPC (ComPiler for Portable Checkpoint-

ing) [Rodŕıguez 2008] is a portable and transparent checkpointing infrastruc-

ture for MPI [Walker and Dongarra 1996] parallel applications. It is made up of

a runtime library containing checkpoint-support routines and a compiler that

automates the use of the library. In this work the CPPC library is modified

and extended to provide fault tolerance support to OpenMP applications. This

extension preserves the main characteristics of the CPPC tool: portability and

reduced checkpoint size. The solution proposed will allow to insert fault tolerance

into both OpenMP and hybrid OpenMP/MPI applications.

This paper is structured as follows. [Section 2] covers Related Work. [Sec-

tion 3] introduces the CPPC tool. [Section 4] describes how CPPC is modified

and extended to cope with OpenMP applications. [Section 5] presents the experi-

mental results using the NAS Parallel Benchmarks. Finally, [Section 6] concludes

this paper.

2 Related work

Fault tolerance for parallel applications is a very active research topic with a

large number of approaches published in the last two decades. In this section we

will focus on proposals that, like the one proposed in this work, address fault

tolerance for shared memory applications.

There exist in the literature several solutions based on checkpointing. The

main difference with the one proposed in this paper is portability, whether code

portability (allowing its use on different architectures) or checkpoint files porta-

bility (allowing to restart on different machines).

ReVive [Prvulovic et al. 2002] and SafetyNet [Sorin et al. 2002] are hardware

solutions. They perform checkpointing and logging to achieve fault tolerance on

shared memory multiprocessors relying on specific hardware. They present a

high efficiency, but they are inherently platform dependent.

[Dieter and Lumpp 1999] describe a checkpointing library for multithreaded

programs that uses the POSIX threads library provided by Solaris 2. Fault tol-

erance is achieved by the instrumentation of the original source code. During the

execution, the library sends Unix signals to all the threads to synchronize them

at a checkpoint. Some parts of the library are platform dependent, so again this

is a non-portable solution.

DMTCP [Ansel et al. 2009] is a transparent user-level checkpointing package

for distributed multithreaded applications, including hybrid OpenMP/MPI ap-

plications. It uses a coordinated checkpointing method where all processes and

threads cluster-wide need to be simultaneously suspended during checkpointing.

DMTCP does not depend on any specific message-passing library, nor on kernel

modification. It is compatible with Linux distributions running on x86, x86 64,
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or ARMv7 architectures. However, since it stores and recovers the entire user

space, it does not allow for restart in environments with non-portable user-space

structures (e.g. heterogeneous computing environments with user-space commu-

nication drivers).

C3 [Bronevetsky et al. 2004, Bronevetsky et al. 2006] is a checkpoint com-

piler that follows an application-level approach, achieving fault tolerance through

the instrumentation of the original application. C3 intercepts all calls to the

OpenMP library and reimplements some of the OpenMP functionalities. It can

be used on different platforms, but the generated checkpoint files are not portable,

as it enforces data to be recovered at the same virtual address as in the original

execution to achieve pointer consistency.

[Fu and Ding 2010], as well as [Tahan and Shawky 2012], follow an approach

based on redundancy instead of checkpointing. These approaches avoid the over-

head of I/O transfer present in checkpoint techniques. However, they can only

detect the errors but not correct them if multiple copies of the computation fail.

3 CPPC overview

CPPC is an open-source checkpointing tool for MPI applications available at

http://cppc.des.udc.es under GNU general public license (GPL). It is im-

plemented at the application level, and, thus, it is independent of the MPI im-

plementation, the operating system, and any higher-level framework used.

CPPC reduces the amount of data to be saved by storing user variables and

using a liveness analysis to save only those variables that are indispensable for

the application recovery. Besides, CPPC applies another snapshot size reduction

technique, zero-blocks exclusion [Cores et al. 2013], which consists in avoiding

the storage of memory blocks that contain only zeros.

Generated state files are portable, allowing the execution to restart on dif-

ferent architectures and/or operating systems. Portability is achieved by using a

portable storage format and by avoiding the inclusion of architecture-dependent

state in checkpoint files. CPPC uses [HDF5] (Hierarchical Data Format 5), a

data format and associated library for the portable transfer of graphical and nu-

merical data between computers. The architecture-dependent state is recovered

through the re-execution of the code responsible for creating such state in the

original execution.

CPPC follows a distributed and non-coordinated approach, described in

[Rodŕıguez et al. 2009], where checkpoints are taken independently by each pro-

cess and consistency is guaranteed by locating checkpoints at safe points, where

there are no pending communications. During the restart execution, the pro-

cesses perform a negotiation to achieve an agreement about which subset of

checkpoint files will be used for the application recovery.
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Figure 1: CPPC global flow.

CPPC appears to the final user as a compiler tool and a runtime library. At

compile time the CPPC source-to-source compiler automatically transforms a

parallel code into an equivalent fault-tolerant version with calls to the CPPC

library, see [Fig. 1] and [Fig. 2], to perform the following actions:

– Configuration and initialization: at the beginning of the application,

CPPC Init configuration() and CPPC Init state() perform the config-

uration and initialization of the necessary data structures for the library

management.

– Registration of variables: using the CPPC Register() routine, variables

necessary for the successful recovery of the application are explicitly marked

for inclusion in checkpoint files. During restart, this routine will also per-

form the recovery of the values from the checkpoint files to their proper

memory location. A CPPC Unregister() routine is also provided, allowing

to remove obsolete registered variables that do not have to be included in

future checkpoint files.

– Checkpoint: the CPPC Do checkpoint() routine is added at selected safe

points inside the most computationally expensive loops of the application.

A checkpoint file will be generated every N calls to this function, being N

user-defined. At restart time this routine checks restart completion.

– Conditional jumps: flow control code is added (CPPC Jump next() rou-

tine and labels) to re-execute selected state-recovering statements during

the restart.

– Shutdown: the CPPC Shutdown() routine is added at the end of the appli-

cation to ensure consistent system shutdown.

The restart phase has three fundamental parts: finding the recovery line (the

subset of checkpoint files that will be used), reading the checkpoint data into
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Figure 2: Instrumentation schema.

memory, and recovering the application state. The first two steps are encapsu-

lated inside the CPPC Init state() call. In order to achieve complete state re-

construction it is necessary to recover not only data pertaining to user variables,

but also state created in the original execution that cannot be portably stored

into a checkpoint file. The application stack is an example of such non-portable

state. CPPC uses selective code re-execution to achieve complete application

state recovery. In this way, non-portable state is recovered by re-executing the

instructions that created such state in the original run. In particular, the ap-

plication stack is recovered by recreating the sequence of original function calls

that built the stack up to the checkpoint location. In order to do this, the CPPC

compiler instruments the original code with jumps between the appropriate sec-

tions of code. These jumps are only taken during an application restart. In the

example in [Fig. 2] a jump is taken immediately after CPPC Init state() to

skip the code up until the CPPC Register() block. After recovering the values

of user variables, another jump is taken, reaching the function where the check-

point is located. If the compute() call receive any parameters, their values would

be stored by the library in the checkpoint file so that during a restart an iden-

tical call would be reissued. The same process is followed inside the compute()

function. Once all values of the user variables are recovered by the code labeled

REGISTER BLOCK 2, particularly that of the loop index variable i, another jump
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is taken, moving control into the loop to execute the CPPC Do checkpoint()

function. Here, CPPC checks that control has reached the original checkpoint

location and the restart phase is deactivated. Note that, by skipping the loop

header through the jump, the recovered i value is preserved. For an in-depth

description of the design and implementation of CPPC and its restart protocol,

the reader is referred to [Rodŕıguez et al. 2010, Rodŕıguez et al. 2011].

4 Using CPPC on OpenMP applications

OpenMP is an API (Application Programming Interface) for shared-memory

parallelism in C, Fortran and C++. It is portable across shared-memory archi-

tectures from different vendors. The specification defines a collection of compiler

directives, library routines and environment variables that implements multi-

threading with the fork-join model, based on the creation and destruction of

threads.

The following subsections describe how CPPC is modified and extended to

cope with OpenMP applications.

4.1 Configuration, initialization and shutdown

In the MPI programming model the user specifies the number of processes at the

beginning of the program, and typically this number remains constant through-

out the execution. In contrast, OpenMP provides a dynamic form of parallelism

in which threads are created and destroyed during the program execution. In

an OpenMP program, when a thread encounters a parallel directive a team of

threads is created and all of them execute concurrently the parallel region located

inside the directive. The thread that executes the parallel directive becomes the

master thread of the new team.

From the CPPC perspective, this involves the need to create and initialize

data structures for the management of the master thread and each new thread

created along the program. To avoid overestimating the number of threads, each

new thread is responsible for the initialization of its private structures and for the

inheritance of the necessary configuration parameters from the master thread.

Thus, the configuration of the library continues to be at the beginning of the

program, but now, new initialization and shutdown blocks are added at the

beginning and at the end of each parallel region, respectively. The process is

represented in [Fig. 3].

4.2 Registration of variables

The live variable analysis provided by the CPPC compiler is reused to identify

those variable values that need to be saved for the correct restart of the exe-
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Figure 3: Parallel regions management.

cution. Depending on the considered application, the use of this technique can

significantly reduce checkpoint file sizes [Cores et al. 2013].

In MPI each process has its own local variables so that in CPPC-instrumented

MPI-codes each process saves its local computational state in its own checkpoint

file. In contrast, OpenMP variables can be private or shared. For private vari-

ables, each thread has its own memory copy. In the case of shared variables,

there is only one copy accessible by all threads.

CPPC has been extended to distinguish between private and shared variables.

Each thread saves its private variables into its own checkpoint file. Shared vari-

ables, on the other hand, will only be included in the checkpoint file of the mas-

ter thread. Private variables are registered using the original CPPC Register()

routine. For the registration of shared variables, the CPPC Register shared()

routine has been added to the library. This routine will be called by all the

threads but only the master thread will include the values of the shared vari-

ables into its state files. Its execution by all threads is mandatory as, during

restart, synchronizations are performed to avoid accesses to a shared variable

before the master thread recovers its value.

4.3 Checkpoint file dumping and consistency protocol

The CPPC Do checkpoint() routine is inserted inside the most computationally

expensive loops of the OpenMP application using the heuristic analysis provided

by the CPPC compiler [Rodŕıguez et al. 2009] to locate them. As mentioned in

[Section 3], checkpoints are stored using [HDF5], which enables the restart on

different architectures, and applies a file size reduction technique, the zero-blocks

exclusion [Cores et al. 2013].

When there are not any shared variables registered a non-coordinated check-

pointing is performed. Otherwise, a coordinated approach is needed to ensure

that both private and shared state are consistently stored to the checkpoint files,

1358 Losada N., Martin M.J., Rodriguez G., Gonzalez P.: Extending ...



allowing the recovery of a consistent global state.

The coordinated protocol followed is similar to the one used in C3, described

in [Bronevetsky et al. 2004, Bronevetsky et al. 2006]: all threads are forced to

generate a checkpoint file at the same time. For this purpose, a checkpoint flag

is used to indicate when a checkpoint is in process, and OpenMP barriers are

inserted before and after the state dumping step to ensure that no thread can

continue its execution until all threads have reached that point. Additionally,

OpenMP barriers contain implicit flushes of shared variables, guaranteeing a

consistent view of memory.

Note that the inclusion of barriers in the checkpoint operation can interfere

with other barriers present in the application, including implicit barriers present

in some OpenMP directives, such as the for directive (detailed in [Section 4.5]).

Those barriers are thus replaced with a call to CPPC Barrier(), a new library

routine that includes an OpenMP barrier and a conditional call to the checkpoint

routine. In this way, a checkpoint file is generated inside CPPC Barrier() when

the checkpoint flag is activated, avoiding deadlocks.

4.4 Parallel regions

If a checkpoint call is inserted inside a parallel region then it has to be guaranteed

that the same number of threads as in the original execution will be created

during the restart. Otherwise, the restart will not be successful. If more threads

are created, some of them will try to read a non existent checkpoint file. If fewer

threads are created, not all the application state will be recovered.

For this reason, parallel directives are instrumented to include their original

number of threads in the checkpoint files. During the restart, the dynamic ad-

justment of the number of threads is disabled and the omp set num threads()

routine is called to force the creation of exactly the same number of threads as

in the original execution. CPPC will abort the restart if the number of threads

requested is greater than the limit specified by the thread-limit-varOpenMP

internal control variable.

4.5 Parallel loops

When the OpenMP for directive is applied to a loop inside a parallel region, its

iteration space is divided among the threads according to the schedule(type,

chunk size) clause. The scheduling type can be static, dynamic or guided,

and the chunk size value is used to generate the subsets of iterations.

As shown in [Fig. 4], when checkpoints are taken inside a parallel loop, the

iteration space will be formed by chunks where all the iterations are completely

processed, chunks where some iterations have been processed, and chunks where

all the iterations are unprocessed.
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Figure 4: Representation of the state of a parallel loop.

Thus, some information has to be included into the checkpoint files in order

to skip, during the restart, those iterations that were already processed during

the original execution. The following subsections detail how the restart process

is managed for each of the scheduling types.

4.5.1 Static scheduling

With the static scheduling the iteration space is divided into chunks of size

chunk size distributed among threads in a round-robin fashion. This scheduling

is deterministic: different executions will produce the same chunks and the same

assignment to threads.

The solution is simple in this case, as each thread only needs to include in its

checkpoint file the value of the furthest iteration index it has processed. During

the restart execution, each thread will be assigned the same chunks and it will

skip all iterations until it gets to the iteration recovered from its checkpoint

file. At that moment the restart process finishes, and the subsequently assigned

iterations are executed normally.

4.5.2 Dynamic scheduling

Using dynamic scheduling the iteration space is also divided into chunks of

size chunk size, but now they are assigned to threads in a dynamic and non-

deterministic way. This assignment can cause that, during the restart, the same

thread gets more than one half-processed chunk, having to alternate between

skipping already-executed iterations and executing pending iterations to recover

the application.

To manage the restart process, the same information as in the static schedul-

ing is included in the checkpoint files, but now the information is shared among

the threads. [Fig. 5] shows an example for a 20 iteration loop executed using 4

threads, where X [j] (0 ≤ j ≤ T−1, being T the number of threads) is the shared

array that stores the index of the furthest iteration processed by each thread.
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Figure 5: Processing state upon checkpoint creation in a dynamic scheduling.

Using this information, at restart time each thread will be able to determine

if the assigned chunk belongs to a processed, half-processed, or non-processed

chunk and take the appropriate actions.

Without loss of generality, lets assume a forward loop. Let {it0, it1, . . . , itk−1}
be the set of indexes of the iterations of the chunk assigned to thread t, being k

the chunk size:

– If it0 > X [j] ∀j, a non-processed chunk is assigned. Restart process is fin-

ished and the execution continues normally as it is guaranteed that no more

processed or half-processed chunks will be assigned.

– If ∃ j : it0 < X [j] < itk−1, a half-processed chunk is assigned. Iterations with

index in the range [it0, X [j]] will be skipped and iterations with index in the

range (X [j], itk−1] will be computed.

– If none of the two previous conditions is satisfied, a processed chunk is as-

signed. All iterations in this chunk will be skipped.

For backwards loops the analysis would be similar but reversing the direction

of the inequalities.

4.5.3 Guided scheduling

In a guided scheduling, the chunk assignment is performed as in the dynamic

scheduling, but now the chunk size is dependent on the particular OpenMP

implementation used. From the CPPC library perspective, both the chunk size

and the chunk assignment are considered unknown and a new approach is used

to manage this scheduling type.

In order to calculate at restart time the set of processed and pending iter-

ations, the processed iterations are grouped in subsets of consecutive iterations

and represented with integer pairs as (fj , lj), being fj the index of the first it-

eration and lj the index of the last iteration of each processed subset j. These
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Figure 6: Processing state upon checkpoint creation in a guided scheduling.

pairs are updated by the threads as they execute the iterations and are included

in the checkpoint files as shared information. [Fig. 6] shows the processing state

of a 20 iteration loop executed with guided scheduling using 4 threads, and the

representation of this state with a list of 4 pairs.

Without loss of generality, lets assume a forward loop. Let it be the index of

the current iteration assigned to thread t:

– If � j : it < lj , change to normal execution as the recovery process has

finished.

– If ∃ j : fj ≤ it ≤ lj , skip all the iterations until it > lj.

– If none of the two previous conditions is satisfied: compute all iterations until

getting an iteration with index greater or equal to fk = minj{fj : it < fj}.
For backwards loops the analysis would be similar but reversing the direction of

the inequalities.

4.6 Reduction operations

OpenMP allows the specification of reduction operations in some directives, such

as parallel or for, using the reduction(operator:list) clause. For each

variable in the list, OpenMP creates a private copy for each thread, initialized

appropriately for the operator. All references to the variable in the reduction

region affect the private copy. After the reduction region, the original variable

will be updated with the private copies using the specified operator.

4.6.1 Parallel directive

For managing a reduction operation in a parallel directive the following steps

are taken:

1. The shared reduction variable is registered before the parallel region using

the CPPC Register shared() routine. This will make possible to recover its

initial value during the restart execution.
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2. At the beginning of the parallel region, each thread will register its private

copy using the CPPC Register() routine. This will include into the check-

point files the values that correspond to the work performed by each thread.

During the restart the register routines will perform the recovery of the shared

and the private copies of the reduction variable from the checkpoint files.

4.6.2 For directive

The management of reduction operations in a for directive is more complex,

since it is not guaranteed that all threads will execute the body of the loop. For

example, if the chunk size specified in a for directive produces fewer iteration

subsets than threads executing the directive, some threads will not do any work

at all. This involves that one thread could execute the body of the directive

during the original execution, but not during the restart.

Thus, during a restart the shared and private copies of the reduction vari-

able are recovered before the for directive, and the initial value of the shared

reduction variable is updated to the result of a partial reduction. The partial

reduction will use the initial value of the shared reduction variable and each

private copy. In this way, the shared reduction variable will store the result of

the job performed in the original execution. This approach avoids the loss of

computed job and guarantees the correctness of the result even with multiple

restart executions.

New routines have been added to the library to perform these operations:

– CPPC Register reduction(): called inside the for region to register the

private copies of the reduction variable.

– CPPC Unregister reduction(): called at the end of the for region to re-

move the registrations associated to a reduction.

– CPPC Init reduction(): called before the for region to register the shared

reduction variable during a normal execution and to recover the shared and

private copies of the reduction variable and perform the partial reduction of

their values during a restart.

5 Experimental results

The following subsections assess the overhead of the solution, distinguishing

between the overhead of the checkpoint operation and the restart procedure.

The application testbed used, summarized in [Tab. 1], was comprised of the

ten applications of the NAS Parallel Benchmarks (NPB) [NAS NPB] v3.3 for
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Description
Number of threads

1 2 4 8 16

FT Fourier Transform 280.72 140.44 72.03 38.37 22.18

MG MultiGrid 61.17 30.21 16.11 9.38 7.76

IS Integer Sort 36.74 19.42 9.87 5.10 2.73

CG Conjugate Gradient 304.99 142.83 75.19 41.37 24.33

BT Block Tri-diagonal solver 1048.07 525.91 270.30 144.62 87.00

SP Scalar Penta-diagonal solver 643.30 320.74 168.79 103.33 156.69

UA Unstructured Adaptive mesh 838.41 428.33 234.95 138.49 94.84

DC Data Cube 582.78 313.45 185.05 117.72 78.40

EP Embarrasingly Parallel

Static scheduling 277.98 139.07 71.04 36.27 19.34

Dynamic scheduling 277.65 138.83 70.28 36.19 19.27

Guided scheduling 278.65 139.53 70.62 36.41 19.39

LU Lower-Upper Gauss-Seidel

Static scheduling 762.30 354.58 183.51 98.48 58.40

Dynamic scheduling 764.99 354.27 183.61 99.05 58.60

Guided scheduling 764.96 354.36 183.59 99.14 58.50

Table 1: Original runtimes (s) for the testbed benchmarks.

OpenMP. These are well-known and widespread applications that provide a de-

facto test suite. Out of the NPB suite, the DC benchmark was run using class

B, while the rest were run using class C.

The CPPC compiler automatically determines the checkpoint location inside

the most computationally expensive loops of the application. In all the NPB

applications, except EP, DC and LU, the checkpoint is placed inside a sequential

main loop outside the parallel region. In DC the checkpoint is located in a

sequential loop inside a parallel region. In EP and LU the checkpoint is placed

in a parallel loop. Furthermore, EP presents multiple reduction operations in the

for directive. Both EP and LU will be used to compare, in terms of efficiency,

the management of the different scheduling types (static, dynamic and guided).

Runtime tests were performed in the Pluton cluster, hosted by the University

of A Coruña. Each node consists of two Intel Xeon E5-2660 Sandy Bridge-EP

2.2 GHz processors, with 8 cores per processor and 64 GB of RAM. State files

were stored in an NFS mounted directory, using a Gigabit Ethernet network.

The CPPC version used was 0.8.1, working along with HDF5 v1.8.11 and

GCC v4.4.7.

Each result in this section was obtained after performing 10 experiments.
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Figure 7: Checkpoint overhead: checkpoint located outside a parallel region.

Average runtimes are reported. [Tab. 1] shows the original runtimes for all the

NPB applications, that is, the runtime of the non-fault-tolerant version.

5.1 Checkpoint overhead

The overhead of a fault tolerant solution based on checkpointing depends deeply

on the overhead introduced by the checkpoint file dumping. This overhead is

tightly tied to the size of the data to be dumped. When the fault tolerant solution

is applied to a parallel application, the consistency protocol between threads may

also impact the overhead of the checkpoint operation, due to the synchronizations

introduced by the protocol.

[Fig. 7] and [Fig. 8] show the runtimes of the CPPC instrumented versions.

As one checkpoint file is generated for each N calls to CPPC Do checkpoint(), in

these experiments the dumping frequency (N ) is set to the appropriate value for

each application (using the configuration parameters of CPPC) so that a state file

is generated when the 75% of the computation has been completed. For legibility

reasons, runtimes are normalized with respect to the original execution of the

application using the same number of threads. The master thread checkpoint file

sizes are also shown in the figure. In DC, EP and LU, in which the checkpoint is

placed inside a parallel region, the rest of the threads also generate checkpoint

files, but the size of these files is always smaller than 0.13 MB/thread.

Most of these applications present small relative checkpoint overheads. How-

ever, as can be seen, three of the ten applications, FT, MG and IS, present larger
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Figure 8: Checkpoint overhead: checkpoint located inside a parallel region.

overheads. As mentioned above, the overhead heavily depends on the state file

size. These sizes in FT and MG exceed, respectively, 5 GB and 2 GB, and there-

fore, the observed checkpoint overhead is large for both of them. Note that the

overhead would be larger if the live variable analysis and the zero-blocks exclu-

sion [Cores et al. 2013] were not used (for example, the checkpoint file size in

MG would be 3.32 GB instead of 2.32 GB). The impact of this overhead obvi-

ously depends on the original application runtime. Since the original runtime

for MG is lower than for FT, its checkpoint overhead, in percentage, is signifi-

cantly larger. The same reasoning applies to the results observed for IS, the high

impact on the checkpoint overhead is due to the small original runtime of the

application.

Although, as can be seen, the relative overhead increases with the number

of threads, the absolute overhead keeps practically invariable. For those bench-

marks with the checkpoint outside a parallel region, the absolute overhead re-

mains constant as the state that needs to be saved (the shared state) does not

vary with the number of threads and coordination is not required. For those with

the checkpoint inside a parallel region, as the private variables represent only

a very small percentage of the data to be checkpointed and the coordination

cost is, in general, irrelevant (see [Subsection 5.1.1]), the absolute overhead does

not differ significantly either. For example, MG presents an absolute overhead

of approximately 31 seconds, independently of the number of threads. The large

relative overhead of this application for sixteen threads is because of the small
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runtime of the original version with this number of threads. Inserting a check-

point call in this case is equivalent to perform a checkpoint dumping of 2.32 GB

every 7.76 seconds. In a real application the checkpoint frequency should be

adjusted in a more realistic way to avoid this behavior.

With regard to the checkpoint overhead using different scheduling types in

a parallelized loop (LU and EP benchmarks), results show that there are no

relevant differences between the approaches used to manage the static, dynamic

or guided scheduling.

5.1.1 Checkpoint file generation and consistency protocol overhead

As explained in [Section 4.3], if the checkpoint routine is called inside a paral-

lel region, the consistency protocol adds synchronization operations before and

after the checkpoint file generation. Hence, for DC, EP and LU it is interesting

to study which part of the checkpoint overhead is due to the checkpoint file

generation and which part is due to the consistency protocol.

[Tab. 2] shows the checkpoint file generation times (G) and the consistency

protocol overheads (P), both in seconds. The checkpoint file generation time

corresponds to the time elapsed during the largest state file generation, which

corresponds to the generation of the master thread checkpoint file. The con-

sistency protocol overhead is the time elapsed between the activation of the

checkpoint flag by one thread, until all of them start the checkpoint generation

once synchronization is reached.

The checkpoint file generation overheads are consistent with the state file

sizes shown in [Fig. 7] and [Fig. 8]. Generation overheads slightly increase with

the number of threads as each thread contributes with its private data.

For LU and EP the overhead introduced by the CPPC consistency protocol

is negligible, as it adds less than 0.006 and 0.04 seconds respectively. DC, in

contrast, presents a high consistency protocol overhead due to the particular

characteristics of this application. As explained previously, in DC the checkpoint

is located in a sequential loop inside a parallel region. It is a data intensive

benchmark. The execution of each iteration involves multiple I/O operations,

where threads compete for I/O bandwidth. Thus, in the original DC benchmark,

as the number of threads increases, so does the variability of the iteration time,

evolving its standard deviation from 1.69 seconds in the sequential version, to

4.56 seconds with sixteen threads. The difference between the fastest and the

slowest thread is increased, which increments the consistency protocol overhead

in turn.

5.2 Restart overhead

The execution overhead was studied in the previous section during a fault-free

execution. If a failure occurred, the restart time overhead would play a funda-
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Number of threads

1 2 4 8 16

DC
G 0.0145 0.0365 0.0586 0.1210 0.2458

P 0.0001 4.7133 5.6406 6.5198 8.3752

EP static
G 0.0201 0.0205 0.0306 0.0350 0.0566

P 0.0001 0.0024 0.0033 0.0038 0.0042

EP dynamic
G 0.0202 0.0209 0.0254 0.0420 0.0567

P 0.0001 0.0018 0.0029 0.0037 0.0043

EP guided
G 0.0245 0.0219 0.0290 0.0377 0.0608

P 0.0001 0.0016 0.0035 0.0037 0.0044

LU static
G 7.0813 7.0971 7.0944 7.1069 7.1181

P 0.0001 0.0001 0.0001 0.0002 0.0003

LU dynamic
G 7.0882 7.0945 7.0933 7.1090 7.1257

P 0.0001 0.0001 0.0001 0.0001 0.0004

LU guided
G 7.1088 7.0973 7.0865 7.1002 7.1316

P 0.0001 0.0001 0.0001 0.0002 0.0002

Table 2: Checkpoint file generation (G) and consistency protocol (P) overhead.

mental role in the global execution time.

Restart experiments were performed using the checkpoint files generated in

the previous sections. Restart times have been split into two phases: reading (RT)

and positioning (PT). The results are shown in [Tab. 3]. As can be seen, the

reading is the most costly phase. It includes both the negotiation to decide the

state files to be used, and the actual read of their contents. The positioning

phase includes the execution of all the additional operations needed to recover

the application, that is, the execution of each thread up to the point where the

state file was generated.

Reading times, as expected, are consistent with the state file sizes (shown

in [Fig. 7] and [Fig. 8]). The larger the checkpoint file is, the slower the reading

phase becomes. The first part of the table presents the applications with the

checkpoint located in a sequential region, and thus, a single checkpoint file is

read. In those applications where the checkpoint is placed in a parallel region

(DC, EP and LU), reading times slightly increase when more threads are involved

in the negotiation process. The difference however is very small, a few hundredths

of a second.

As for the positioning times, note that they are determined by two main

factors: 1) the amount of data that must be copied to the proper memory lo-

cation; and 2) the execution of the non-portable state recovery blocks. In all
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Number of threads

1 2 4 8 16

S
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e
n
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a
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e
ck
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o
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t

FT
RT 47.90 48.06 47.95 48.06 47.92

PT 2.30 2.30 2.31 2.31 2.31

MG
RT 23.48 23.47 23.48 23.48 23.47

PT 1.51 1.51 1.51 1.51 1.51

IS
RT 4.76 4.76 4.90 4.76 4.76

PT 0.36 0.29 0.26 0.25 0.25

CG
RT 3.92 3.92 3.92 3.92 3.92

PT 0.20 0.20 0.20 0.20 0.20

BT
RT 6.60 6.59 6.60 6.59 6.60

PT 0.30 0.30 0.30 0.30 0.30

SP
RT 3.23 3.23 3.25 3.23 3.23

PT 0.15 0.15 0.15 0.15 0.15

UA
RT 3.83 3.83 3.83 3.83 3.83

PT 0.20 0.19 0.19 0.19 0.19

P
a
ra

ll
e
l
re

g
io
n

ch
e
ck

p
o
in
t

DC
RT 0.01 0.02 0.04 0.06 0.13

PT 0.01 0.02 0.05 0.05 0.06

EP static
RT 0.02 0.02 0.02 0.03 0.04

PT 0.01 0.02 0.02 0.03 0.04

EP dynamic
RT 0.02 0.02 0.02 0.03 0.04

PT 0.02 0.02 0.01 0.02 0.02

EP guided
RT 0.02 0.02 0.02 0.03 0.04

PT 0.02 0.02 0.02 0.03 0.03

LU static
RT 6.32 6.33 6.33 6.35 6.36

PT 0.26 0.27 0.26 0.27 0.27

LU dynamic
RT 6.31 6.33 6.33 6.35 6.35

PT 0.26 0.26 0.26 0.26 0.27

LU guided
RT 6.30 6.33 6.32 6.33 6.33

PT 0.26 0.26 0.26 0.26 0.26

Table 3: Restart times (s): reading time (RT) and positioning time (PT).

of the testbed applications the positioning times are consistent with the state

file sizes (shown in [Fig. 7] and [Fig. 8]). Also, for most applications positioning

times do not vary with the number of threads. The exception is IS, where the

positioning times decrease with the number of threads due to the re-execution,

during restart, of a dynamic memory allocation block executed in parallel.

Finally, positioning times in EP or LU do not show differences between the
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approaches used to manage the restart of each one of the different scheduling

types (static, dynamic or guided).

6 Concluding remarks

This paper presents the extension of CPPC, a checkpointing tool for message-

passing applications, to achieve fault-tolerance in OpenMP applications. The

proposed solution applies an application-level checkpointing using a portable

and coordinated approach.

Modifications have been performed to the CPPC library, allowing the man-

agement of the necessary data structures for each thread. Also, new functionali-

ties have been added to the library in order to deal with OpenMP main features,

such as the creation and destruction of threads; registration mechanisms for both

private and shared variables; and a coordinated checkpointing to allow the con-

sistent dumping of the shared state. Finally, support for parallelized loops with

different scheduling types and for the reduction operations is added to the library.

This first extension of the CPPC library is focused on loop-level parallelism. As

experimental results show, this allows for the checkpointing of all the applica-

tions included in the OpenMP NAS Parallel Benchmarks. The management of

task-level parallelism will be studied in future work.

Experimental results show the good performance of the solution. It presents a

good scalability and the absolute overhead introduced is practically independent

of the number of threads executing the application. Also, the restart overhead

remains almost constant between executions with different number of threads,

and it is mainly determined by the size of the data that needs to be recovered.

However, and in spite of the checkpoint file reduction techniques applied,

most of the overhead introduced is due to the state dumping. Thus, optimizations

are being considered to reduce it, such as the distribution of the shared state

among the threads that execute the application.
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